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Abstract

In this thesis, we propose a method to combine CFG and dependency parse trees, and
utilize the combined trees as the input of translation model. The combined parse trees keep
head-dependent relationships in large span and reasonable structures for local phrases,
which benefit the translation for language pairs with sharp contrast in word order.

Our experiments show improved translation accuracy using the proposed model when
compared to that obtained by translating CFG parse trees alone, especially for translating
long sentences. The official human evaluations operated in the Patent Machine Translation
Task of NTCIR-10 Workshop show our translation model produces more adequate results
comparing with the state-of-the-art Hierarchical phrase-based translation model.



Contents

1 Introduction
1.1 Machine translation . . . . . . . . .. L
1.2 About this thesis . . . . . . . .

2 Preliminaries

2.1 Context free grammars . . . . . . . . .. Lo
2.2 Dependency grammar . . . . . . . . .. ..o e
2.3 Statistical machine translation . . . . .. ... ... ... ... ...
2.3.1 Word basedmodels. . . . . . ... ... ... oo
2.3.2 Log-linear modeling . . . . . . . .. ...
2.3.3 Phrase-based machine translation . . . . . .. ... ... ... ....
Rule acquisition . . . . . . .. .. oo

Model . . . . . e

Decoding . . . . . . . .

2.3.4 Hierarchical Phrase-based machine translation . ... ... ... ..
Synchronous CFG . . . . . . . ... .. o

Rule Acquisition . . . . . . . . . .. ..

Gluerules . . . . . . . .

Model . . . . . . e

Decoding . . . . . . . . . e

2.3.5 Evaluation criterions for statistical machine translation . . . . . . .
2.3.6 Minimum error rate training . . . . ... ... ...

3 Tree-to-string Machine Translation Models

3.1 Imtroduction . . . . . . . . . .. L
3.2 Syntax rule extraction . . . . .. ... L L
3.3 Decoding . . . . . . . e

3.3.1 CubePruning . . . . . . ... ...

4 Improving Translation Quality by Tree Combination

4.1 Parse tree deficiencies . . . . . . . .. .. e
4.2 Combining dependency relations with phrase-level structures in CFG trees .

4.2.1 Removing redundant non-terminals in CFG trees . . . . . . . .. ..

DO =

© 00 00~ ~J O U W W

O S S
W Wk~~~ o

14
14
15
16
18

20
20
21



4.2.2 Separating words without dependencies . . . . .. .. .. ... ...
4.2.3 Repositioning nodes by dependency relationships . . . . . .. .. ..
4.2.4 Tag determination by headwords . . . . . . .. .. .. ... ... ..
4.3 Rule Acquisition . . . . . . . . . ...
44 Themodel . . . . . . . .
4.5 Decoding . . . . . . . . e
4.5.1 Optimizing for memory usage . . . . . . . . . . . ... ... ..

Experiments
5.1 Evaluations at NTCIR-10 workshop . . . . . . . . ... ... .. ......
5.1.1 Formal runresults . . . . . . . . ... ..o
5.1.2 Post-evaluation results . . . . . . .. ..o o oL
5.2 Evaluations comparing with the CFG-based SMT systems . . . . ... ...
5.3 Erroranalysis . . . . . . . .. L L e
5.4 Translating hybrid parse trees . . . . . . . . . ... oL
5.5 Sample of Tree combination . . . . . . ... ... ... ... .........
5.6 Samples of translation . . . . . ... ... L

Conclusions
Acknowledgments

Bibliography

ii

28
28
29
30
31
31
33
33
35

36

37

38



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4

An example derivation of CFG . . . . . . . ... ... L.
An illustration of dependency relationship . . . . . ... ... ... ... ..
Architecture of SMT systems with Noisy-channel model . . . . . . ... ..
An example of word alignments . . . . . ... ... Lo
Some possible examples of extracted phrase pairs . . . . . . ... ... ...
Ilustration of decoding process of Phrase-based model . . . . . . . ... ..
Two examples of translation pair with gaps . . . . . ... ... .. .. ...
Illustration of extracting hierarchical translation rules . . . . .. .. .. ..
Illustration of decoding by CKY algorithm . . . . . .. ... ... ......

An example of parsed CFG tree and corresponding translation . . . .. ..
Extraction examples of tree-to-string translation model . . . . .. ... ..
An illustration of decoding a tree fragment . . . . . . ... ... ... ...
An illustration of cube pruning . . . . . . . .. ..

Parsed Dependency trees may cause translation problems . . . ... .. ..
Removing non-terminals that have only one child node . . . . . . .. .. ..
Comma separation example . . . . . . . . ... oo
Eliminating a layer with multiple non-terminals . . . . . . .. .. .. .. ..
Restructuring a tree fragment that contains a verb as a head . ... .. ..
Example of a tree fragment with marked headwords and converted tags

Hierarchical rule extraction . . . . . .. .. .. ... .. L ...
Search for the translation rules of a tree fragment . . . . . . . .. ... ...

A typical example of parsing error in patent . . . . .. .. ... ... ...,
A combined tree and best hypotheses for each node . . . . . . ... ... ..
A sample of CFG parse trees . . . . . . . . . . ...
A sample of combined parse trees . . . . . . ... ... L.

iii

© © 00 J Ut = W

10

15
16
17
18



Chapter 1

Introduction

1.1 Machine translation

The goal of machine translation is simple: to translate sentences or documents from one
natural language to another in an automatic fashion. However, this does not mean it is
easy to achieve. Since the digital computer was developed, attempts to translate using
computers have never stopped. However, even today, state-of-the-art machine translation
systems do not always generate acceptable results. For example, when we translate “We
will miss John” using Google’s Translation Service, it generates the result “0 000000
00007 (this trial was performed on Jan. 12, 2014). In addition, it is not unusual for
these systems to produce ungrammatical or incomprehensible translations.

In recent years, many commercial and free online translation systems have been devel-
oped. Most of them are built on the basis of Rule-Based Machine Translation (RBMT)
technology that utilize linguistic knowledge of the relationships between the source and tar-
get language. Basically, this kind of knowledge is retrieved from bilingual dictionaries and
other resources and built into the translation systems manually. Large amounts of morpho-
logical, syntactical, and even semantic knowledge are required so that RBMT systems can
produce high-quality translations. Hence, the cost of developing these systems is very high.

Statistical Machine Translation (SMT) allows translation systems to be built directly
on the bilingual corpora of translated text without additional linguistic knowledge. SMT
systems automatically discover and learn translation rules, and assign probabilities to them.
As the amount of Internet content increases, large amounts of bilingual translated text have
become easier to collect. Based on this, SMT systems are expected to be applied to more
language pairs. Compared to RBMT systems, SMT systems are also much easier to develop
and maintain; even a Master’s student can build one from scratch.

Although SMT systems have already achieved high performance in some major language
pairs such as French-English and Arabic-English, some problems still need to be tackled for
translations between languages that significantly differ in word order and syntax, such as
Japanese-English.



1.2 About this thesis

To produce better translations for language pairs such as English and Japanese, syntax
parse trees are generally applied to guide the translation process. CFG parse trees provide
syntax structures for sentences, but as English and Japanese hugely differ in the syntax,
translation models using CFG parse trees alone can hardly capture long-range translation
relationships. By contrasy, dependency parse trees provide head-dependent relationships of
the words in a whole sentence, but the reasonable local phrase structures are lost.

In this thesis, we attempt to capture the long-range correspondences of translation pairs
in a discriminating way. We combine CFG and Dependency parse trees as the input of our
translation model. The combined tree keeps both the structural information and depen-
dency relationships, which is helpful for long sentence translations.

In our evaluations, we found our model could generally achieve better automatic evalu-
ation scores compared to our baseline models that translate CFG parse trees alone. For
long sentences (above 40 words), our model outperforms the state-of-the-art Hierarchical
phrase model in an English-Japanese translating task. In the NTCIR-10 Workshop (Goto
et al., 2012), our model outperformed two official baseline models (Hierarchical phrase and
Phrase-based models) in human evaluations.

In the rest of this thesis, we first introduce CFG and Dependency parse trees and briefly
review Statistical Machine Translation in Chapter 2. We then present the tree-to-string
SMT approach in Chapter 3. We describe our methods for combining CFG and Dependency
parse trees, our rule acquisition, the feature set of our model and the decoding process in
Chapter 4. Evaluations are presented in Chapter 5.



Chapter 2

Preliminaries

2.1 Context free grammars

Context free grammars (CFG) (Chomsky & Noam, 1956) are important and widely used in
the researches of linguistics and Nature language processing, which describes the structure
a sentence. Traditionally, a context free grammar is defined as (N, %, R,S). Where in
the tuple, N is a finite set of non-terminals. 3 is a finite set of terminals. R is a set of
production rules, a rule (X,«) where X € N,a € (XU N)* is usually presented in the
form X — a. The last symbol S € N is a start symbol. Figure 2.1 shows an example of
derivation in the form of tree presentation, where A, B,C € N;a,b,c € ¥ and the arrows
show the generating relations of derivation.

Figure 2.1: An example derivation of CFG

This derivation can be generated by following production rules:

S - AB
A — a
B —- bC
C — ¢



2.2 Dependency grammar

In most papers, the origin of modern dependency grammar is regarded to be French linguist
Lucien Tesni’ere (1959), though some researches argue that dependency grammar is already
been used from the Middle Ages. The intuition of dependency grammar is to describe words
in a sentence not by their structures, but dependency relationships. For the example “John
hit a ball”, we can demonstrate these relationships in flowing way:

1) John is the subject of the verb hit
2) ball is the object of the verb hit

3) a is an article that modifies the noun ball

Figure 2.2 shows an illustration of the dependency relationship of this example. Where
“nsubj”, “dobj” and “det” indicates the types of dependency relationships for each modifier.

nsubj dobj

VoIl el

John hit a ball

Figure 2.2: An illustration of dependency relationship

2.3 Statistical machine translation

The approach of Statistical Machine Translation was initiated by Brown et al.(1990) . In this
section, we will introduce some most influential models in this approach, and a common
method for tuning translation models. At the end of this chapter we will explore some
methods for evaluating translation results.

2.3.1 Word based models

Around 1990, as the initial work of IBM group, a series of so called IBM models (IBM model
1 to 5) were proposed (Brown et al., 1993) , which formed the foundation of Statistical
Machine Translation today. Given a sentence f{ = fi...f; with I words in source language
which is to be translated to target sentence 6‘1] = ej...ey. Where f means French and e
stands for English in papers of IBM models. Intuitively, if a word f; in source language and
another word e; in target language always appear simultaneously in bilingual corpus, then
e;j is more likely to be the translation of f;. IBM Model 1 gives the formula to calculate
translation probabilities as follows, which ignores the factor of lexical reordering. Where a
in the formula indicates alignment pairs, a set of correspondences between words in source

and target side.



P(fle) = ) P(f,ale)

For higher IBM Models, more features are considered. In IBM Model 2, absolute align-
ment probability distribution is combined. Then IBM Model 3 adds fertility model. IBM
Model 4 improves IBM Model 3, which introduces a relative distortion model. IBM Model
5 eliminates the problem of deficiency in IBM Model 3 and 4.

Although many newer translation models in subsequent improved translation quality
comparing with IBM Models. They are still state-of-the-art in training word alignments,
which implemented in a widely-used tool, GIZA++(Och & Ney, 2004).

2.3.2 Log-linear modeling

As a basic framework of SMT systems, Noisy-channel model is highly influential for current
SMT systems. By applying Bayes Rule, the best translation hypothesis él‘] can be obtained
by following formula

é] = argrﬁlaX{p(eijlff)}
fI J J
= arger?ax{]w}
= argr'?ax{p(fﬂ@i])p(e‘l])}'

In this model, the posterior probability is decomposed into two probability distributions.
p( fll |e‘1] ) is commonly recognized as so-called the translation model, which gives the confi-
dence of e{ to be a correct translation of f{. p(e{) is so-called the language model which
evaluates the acceptability of 6‘1] in target language. Figure 2.3 shows the architecture of
SMT systems implemented with Noisy-channel model. During the translation process, the

decoder search for the best translation hypothesis according to two models above.

( Translation Model P(f1 le{) ] ( Language Model P(¢{) ]

P Decoder 7

Figure 2.3: Architecture of SMT systems with Noisy-channel model

However, the state-of-the-art SMT systems today apply Log-linear model (Och & Ney,
2002) instead of Noisy-channel model. Log-linear model decomposes translation probability



p(ef|f{) into several feature functions. Each feature function is assigned with a weight
factor. In this model, the best translation hypothesis can be obtained in following formula

¢f = argmax{p(e]|f{)}
= argmax{ eXp(Zm hnlf1, 1)) }
el Ee/i]exp(z mhm (fp ))
M
= argmax{exp Z)\ he(f1,€0))}
m=1
= argmax{z)\ B, f17€1)}

61

Log-linear model provides more flexibility for adding extra knowledge-based features into
SMT system, and Noisy-channel model can be considered as a special case of Log-linear
model. Weight factor A\, of each feature function is usually tuned with BLEU score on an
independent development data set.

2.3.3 Phrase-based machine translation

In IBM models, only lexical probabilities are considered, which focus on modelling the
probabilities of translations for a single word. But other contextual information such as
co-occurrence of multiple words is not taken into account. Phrase-based translation model
proposed by Och et al. (Och & Tillmann+, 1999; Zens & Och+, 2002; Koehn & Och+,
2003) is a successor of word-based models, which models the probabilities of translating
phrases. In this model and following models, the terminology “phrase” does not have
linguistic meaning, but just indicates an arbitrary sequence of words.

Phrase-based model breaks up input sentence f{ into several phrases fi...fr, then trans-
lates each phrase f; into €; respectively. Finally, translated phrases é;...é; are reordered
into appropriate positions. In the mathematical definition of Phrase-based model, p(f|e)
is decomposed into phrase translation probability and distortion probability, as following
formula shows

1
p(fle) = p(filet) = [ [ o(filei)d(a; — biv).
=1

In this formula, a; indicates the start position of f;, b;_1 indicates the ending position of
the source phrase of the left target phrase of €;. A exponentially penalty function with a
parameter « is applied for distortion probability as following equation shows

d(a; = bi—1) = ol b1,

Phrase translation probability ¢(fi|;) is computed based on relative frequency



Count(f, €)

) = = Gt )

Rule acquisition

As the output of IBM models, word alignments with the optimal probability are generated.
An example of word alignments in English-to-Japanese translation task is shown in Figure
2.4. Tt could also be presented in the form of lattice, as the right side of Figure 2.4.

John hit a ball

-
John hit a ball n
ay & R=JL & $ID «

1o .

Figure 2.4: An example of word alignments

For current state-of-the-art SMT systems, translation rules are automatically acquired
using this kind of word alignments. Phrase-based model extracts a phrase pair (f;, €;) if it
is consistent with given word alignments A. Here is the precise definition of consistency:

(fi, &) is consistent with A iff:
1) VeiEEZ(fi,ei)EAﬁfiEf
2) Vf; € f: (fi,ei)) € A=eice
3) Je; €6, f; € fTZ (fj,ei) €A

These three requirements assure that for any aligned word in an extracted phrase pair, its
source or target word is also included in this phrase pair. Unaligned words are also allowed

to exist in an extracted phrase pair, but those phrases only composed with unaligned words
are excluded. Some possible examples of extracted phrase pairs are shown in Figure 2.5.

Model

Phrase-based model applies 6 features for each phrase pair to form a translation rule, hence
they could be combined into Log-linear model:

1) Phrase translation probability log(¢(e|f)) from source to target

2) Phrase translation probability log(¢(f|€)) from target to source



dehn-hit a ball

=T - '
N . (John, ¥ 3 v)
Lati‘T'—--—---m (John, Y= &)
R --i--' E e (a ball, R—JL)
% 7777 —— (hitaball, R—JL % #ID)
1> i i

Figure 2.5: Some possible examples of extracted phrase pairs

3) Lexical translation probability log(lex(é|f,a)) from source to target
4) Lexical translation probability log(lex(f|é,a)) from target to source
5) Phrase penalty: 1

6) Word penalty: Count(é)

For lexical translation probability, many different methods are proposed. A simple one is
based on the word translation probability of IBM model 1:

length(e)

N
lex(e|f,a) = H ]{j[(@j)ea}\ Z w(e;| f;)

=1 Y(i,5)€a

Decoding

In decoding phase, the decoder searches for the best translation hypothesis by given input
sentence. As Figure 2.6 illustrates, firstly, an empty initial hypothesis is made. Then begin
with this hypothesis, a phrase with arbitrary length is selected in each iteration, translated
phrase is added into the end of sentence in target side. The decoding process ends if all
words of input sentence are translated, the best hypothesis with highest score is selected to
be the final translation result.

If a long sentence is inputted, the total number of possible hypothesis will increase expo-
nentially. So in most implementations, a technique called Beam Search (Koehn & Philipp,
2004) is normally applied, which forces the decoder to keep only k-best hypotheses in the
hypothesis stack during decoding.

2.3.4 Hierarchical Phrase-based machine translation

In previous section, we presented Phrase-based translation model, which considers the ad-
jacent context in the translation process. However, Phrase-based model restricts the words
contained in a phrase must be consecutive, which makes the translation unable to capture



John hit a ball hit a ball hit [a ball] *|Jopn [hit [a ball

i I
[VaviE| K=z | [FVaviE| K=z 2]

John hit [a ball] [John|[hit] a ball

N

Figure 2.6: Illustration of decoding process of Phrase-based model

long-distance translation pairs with gaps involved. Two common examples of translation
pairs with gaps are shown in Figure 2.7. Where [Xj] and [X] in the phrases indicate gaps
that can be replaced with any other phrase pair.

not only [Xo] but also [X1] put [Xo] on [Xi]
[(Xo] ZIFTHL, [Xy] [(X1] EiT [Xo] #B<L

Figure 2.7: Two examples of translation pair with gaps

To capture this kind of long range dependencies of words, Hierarchical Phrase-based trans-
lation model was proposed by Chiang (Chiang, 2005), which is one of the most influential
translation models currently.

Synchronous CFG

Hierarchical Phrase-based translation model, and also proposed translation models de-
scribed in following chapters are based on Synchronous CFG (SCFG) (Aho and Ullman,
1969), which modeling the reordering of sub-phrases both in source and target side of a
translation pair. It has the form:

X =< y,a,~>

In this expression, X is a nonterminal, v and « are strings mixed with nonterminals and
terminals, ~ indicates correspondence relationships between nonterminals in both side. For
example, the translation pairs shown in Figure 2.7 can be simply presented in following
forms:



X — <mnotonly Xgbutalso X;, Xo OOODOO X; >
X — <puwtXgon X;, X; 000 XoOOO >

Rule Acquisition

As what we described in the section of Phrase-based model, the extraction process of trans-
lation rules begins with automatized learned word alignments of IBM models. First, a set of
initial phrases are extracted in the same manner of Phrase-based model. Second, in order to
obtain hierarchical translation rules, all phrases that contain initial phrases are observed.
To form a translation rule, those initial phrases are replaced with a nonterminal symbol
X, to indicate a gap between words. An illustration of extracting hierarchical phrases is
shown in Figure 2.8. The two phrases surrounding with solid lines are sub-phrases which
are replaced with nonterminal symbols.

l—eh-n—hi%-a-ba-ll--.
ER| | |
i :
Lo ‘ Xolhit [X1] |, [Xol 1% [X1] % T2
oo [ | [ o siieaes

/1

Figure 2.8: Tllustration of extracting hierarchical translation rules

Following the definition of (Chiang, 2007), a smallest set of translation rules are extracted
if they satisfy following requirements:

PG o .
1) If < f/, e/, > is an initial phrase pair, then
J J
X =< fi e >
is extracted as a rule.

2) If X »<v,a>isaruleand < fij, eg,/ > is an initial phrase pair such that v = ’ylfij”yg

-/

and o = o€} g, then
X =< ’lek’}/g, OlekOQ >

is extracted as a rule.

10



Although this scheme only extracts a smallest set of possible translation rules, the number
of generated rules usually becomes very large in practice. To tackle this problem, many
constrains are applied during the process of rule extraction. For example, a rule must have
a least one aligned word pair, the number of non-terminal and the length of initial phrases
are limited.

Glue rules

For the robustness of the translation model, a set of glue rules that simply concatenate
two sequences is applied. Which has the following form, where S is the start symbol of a
sequence.

S — <S()X0,51X1>
S — <Xy, X1>

Model

Hierarchical phrase-based model also applies Log-linear model as its foundation. The fea-
tures of translation probability become p(v|a) and p(«a|y). For each translation rule and
glue rule, a penalty feature is also applied.

Decoding

To keep the translation process being finished in acceptable time, the number of nonter-
minals in each hierarchical translation rule is usually limited to 2. Hence, the decoder is
basically running upon CKY (Cocke-Kasami-Younger) algorithm to search for translation
hypotheses.

The decoding process begins with phrases containing only one word, for each phrase we
enumerate all translation rules, then generate its translation hypothesis and score them.
The number of translation in each stack is constrained by Beam search. We do this process
recursively until the phrase of whole sentence is reached. For phrases containing two or
more words, we check if any sub-phrase containing a portion of them is observed. If so,
matched sub-phrases are replaced with gaps Xj to form a hierarchical phrase, then we look
for this hierarchical phrase in our translation rules. An example of this decoding process is
illustrated in Figure 2.9. From (a) to (d), we observe translation rules for phrases of length
1 to 4 sequentially, then obtain the final translation hypothesis for the whole sentence.

In this case, a possible translation “O0000000 0007 can be obtained by following
derivation, one translation rule is applied in each step.

<51,51> = <X, Xo>
= < Xshit Xy,Xs0 X,000 >
= < John hit X,, 0000 X, 000 >
= <JohnhitaballOOOOOOOOOO >

11



X —<John, ¥ 3>, ...
X — <hit, $T2>, ...

X —<a, —D>, ...

X —<ball, R—IL>, ... X — <aball, R—JL>, ...

it Xo. X
X — <hit Xo, XoZ$T D>, ... X 5 <Xo hit X1, Xold X545 ..

Figure 2.9: Illustration of decoding by CKY algorithm

12



2.3.5 Evaluation criterions for statistical machine translation

Human evaluation is always the best choice for evaluating machine translation systems.
However, in the practical level, human evaluation brings with some problems as it is time-
consuming and expensive. Hence, there is need for automatic evaluation.

BLEU (Bilingual Evaluation Understudy) (Papineni et al., 2002) is a evaluation method
to satisfy this need, and widely applied in the evaluations for SMT systems. It evaluates
machine translated results according to one or more reference human translations, then gives
a numerical metric which ranged from 0 to 1. This metric shows the closeness to references.
Basically, BLEU computes the concordance rate of unigrams to 4-grams, and applies a so
called “brevity penalty” to penalize candidate translations shorter than references.

NIST score (Doddington, 2002) is another automatic evaluation method based on BLEU.
In BLEU, all ngram correspondences are equally weighted. NIST considers how informative
a ngram is, which means rarer ngrams are weighted more than normal ngrams permeating
in the language.

RIBES (Rank-based Intuitive Bilingual Evaluation Score) (Isozaki et al., 2010) is an auto-
matic evaluation method proposed recently which considers correspondence of word order.
In RIBES, two word order metrics, Normalized Kendall’s 7 and Normalized Spearman’s p
are utilized. Evaluations performed on corpus of NTCIR-7 show it has higher correlation
with human judgments.

2.3.6 Minimum error rate training

To decode translation models, the parameters A, in Log-linear model need to be estimated.
However, using Maximum likelihood estimation can not ensure the translation accuracy is
maximized. With the emergence of BLEU, a estimation method that directly maximizes
this evaluation score is proposed by Och (Och, 2003), which is called Minimum Error Rate
Training (MERT).

In this method, an independent development data set (f,e) is prepared. Given human
translated results r as references and translation results e generated by machine translation
system, the error rate is evaluated by E(r,e). If we use BLEU as our evaluation criterion,
E(r,e) canbe 1-BLEU. MERT will automatically search for the optimized parameters A=
5\11‘4 that minimize the sum of error rate between references and best translation hyothesises.
That is:

le|

\ = argmin Z E(ei, argmax py(hlf;))
A=t h

Here, h in the equation means a possible hypothesis translated from f;.

13



Chapter 3

Tree-to-string Machine Translation
Models

3.1 Introduction

Same as the Hierarchical phrase-based model, tree-to-string models is another widely re-
searched approach of syntax-based models. Basically, a tree-to-string translation model
takes a parse tree (e.g. CFG parse tree or Dependency parse tree) as input, then translate
it into string of target language.

Comparing to phrase-based models we described in previous chapter, for tree-to-string
models utilize syntactic structures, they generally achieve better reordering especially for
long sentences. With benefits from the parse tree, the decoding process is normally faster
than phrase-based models, especially when it is compared with hierarchical phrase-based
model.

However, the parse tree is also “Achilles heel” of tree-to-string translation models. An
accurate and high-speed parser is always required by all phases in SMT from the training
phase to the decoding phase. So a trade-off between parsing speed and accuracy is to
be considered inevitably. Besides, whether how excellent the translation model is, the
translation results of tree-to-string models are always sensitive to parsing errors. Especially
those parsing errors that affect large span in a parse tree is critical in decoding. Thus, a
approach called Forest-to-string is proposed which utilizes n-best parsing results instead of
a golden parse tree, and this gained large improvement in translation quality.

This approach is started by Yamada & Knight (Yamada & Knight, 2001). In their model,
CFG parse tree is taken as input, the translation process is carried out for each leaf word
in the parse tree (terminal). The tree structure is adjusted to fit target language by two
steps, reordering and inserting. In their research, it shows that utilizing syntactic structures
helps improving translation quality, especially for language pairs that differ in word order.
In (Galley et al., 2006), the translation model is relaxed from the range limit of translation
pairs. In their model, not only one single constituent but a treelet (tree fragment) is
considered to be a translation unit. In the mean time, Liu et al. also proposed a tree-
to-string translation model (Liu et al., 2006), which automatically obtains Tree-to-string

14



Alignment Templates from training text. Basically, a Tree-to-string Alignment Template
is a translation pair that has a fragment of parse tree in source side and plain text in the

target side. The evaluation results show that this model outperforms Phrase-based model
over BLEU.

As extensions to the approach of tree-to-string, the model of Mi et al. proposed in
2008 utilizes packed forest (Mi et al., 2008), that is roughly a list of co-best parse results
Xie et al. proposed a Dependency-to-string translation model in 2011 (Xie et al., 2011),
which translates dependency treelets using head-dependents rules. The evaluation results
show their model outperforms the Hierarchical phrase-based model over BLEU on Chinese-
English translation task, which is the first time a source dependency structure based model
catches up with the state-of-the-art models.

In Moses, which is the most influential implementation of state-of-the-art SM'T translation
models, actually a unified framework is applied for training Phrase-based, Hierarchical
phrase-based and tree-to-string models, and decoding them (Hoang et al., 2009). In the

training pipelines, despite the phase of syntactic parsing, similar steps are performed for
tree-to-string models as other two phrase-based models

3.2 Syntax rule extraction

The main difference between Syntax-based models and other phrase-based models is in rule
extraction. In Syntax-based models, all translation pairs have to correspond to syntactic

constituents in the input tree. Normally, even the extraction process is also constrained by
tree structures.

/\
// //

DT NN VBZ  ADVP

I | / / \
the stadium has RB VBD

\ | l / | \
\ also  hosted CD
' ! 1 |

/ .one international match

0 25UFL b EESS £ BELE

Figure 3.1: An example of parsed CFG tree and corresponding translation

Figure 3.1 shows an example of training pairs which has a parsed CFG tree in source
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side (English), and plain text in target side (Japanese). Dotted lines in the mid show
automatically obtained word alignments. To extract translation rules from this training
pair, all tree fragments containing terminals are traversed in the beginning. Basically, as
the first step, only those fragments of one height (that is, fragments contains only one layer
of child nodes) are extracted. An example of extracted translation pair is shown in Figure
3.2 (a). Most Tree-based models allow extracting composed rules(Galley et al., 2006), in
which, several minimal-extracted rules are combined into a larger translation pair. An
example of composed rules is shown in Figure 3.2 (b). Next, similar to Hierarchical phrase-
based model, if a translation pair exists in another larger translation pair, then it can be
replaced by substitution site as Figure 3.2 (c) shows. Tree fragments that only contain non-
terminals are also extracted in the form of Figure 3.2 (d) to capture reordering relationships
in large span. The positions of substitution sites in target side are decided by the positions
of aligned target words.

NN
(a) / —> ZHITL
stadium
VP
yd
v VBD NP — EEHE z RRELE

I
hosted CD JJ NN
I 1 \

one international match

\ % &
SN )
(c) vBD Xo:NP —> Xo% BfELL
I
hosted
S
VRN
(d) Xo:NP Xi1:VP — X Xi

Figure 3.2: Extraction examples of tree-to-string translation model

3.3 Decoding

Typically, chart parsing algorithm is used for decoding Syntax-based models. In the bottom-
up fashion, a larger tree fragment is translated recursively, and it produces a partial trans-
lation which is also called hypothesis. Also, a new hypothesis is formed by combining small
hypotheses with a translation rule. Normally, the translation process of all tree fragments
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can not be performed simultaneously. In order to fully utilize language model, if we have
a rule with “put Xy into X;” in source side, all hypotheses in the position of Xy and X3
need to be obtained before applying this rule to build a new hypothesis. Although some
new methods are proposed to boost decoding speed (e.g. Incremental Decoding (Huang &
Mi, 2010)), we only introduce basic concepts of decoding in this thesis.

hypotheses & scores

translation rules & p(fle), p(elf)

S\ . XOX1 : 0.03, 0.8

KEHBRICED 1 95.3
AXGRAICES : 71.2

e
fmmmmm———— ki " Xo: NP X, : VP  X;X;:0.007,0.2 KEHNEIC EF : 703

hypotheses & scores

BICER 1 59.1
FlcE% 534
FRIPICES 233

hypotheses & scores

KB%:21.9
KBEH :12.6
> :53

Figure 3.3: An illustration of decoding a tree fragment

An illustration of decoding process in tree-to-string model is shown in Figure 3.3. The
input sentence is “the sun rises in the morning”, and a parsed CFG tree is shown in the
left side. We first decode all leaf nodes in the tree, then hypotheses that covering a larger
span are built in each step. In Figure 3.3, now we have obtained the hypotheses of the span
“the sun” and “rises in the morning” respectively. By Log-linear model, each hypothesis
is assigned with a score. The next and also the final step is to translate the fragment in
the top of parse tree. We first enumerate all translation rules we obtained in the extraction
phase. As the two child nodes are both non-terminals, only two rules are to be considered
(“X0X1” and “X1Xo” ). So basically, these two rules are functioning to concatenate two
partial translations either in a forward or reversed order. By applying these rules, we form
new hypotheses for the whole sentence, and the score for each hypothesis is recalculated by
Log-linear model. Finally, the hypothesis with the highest score is selected to be the golden
translation result.
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3.3.1 Cube Pruning

Considering the step of building new hypotheses in Figure 3.3. Assuming we have n; and
ng hypotheses in two hypothesis stack corresponding to Xg : NP and X; : VP in the
tree fragment, then we obtained n, translation rules to combine them. If we expect to
evaluate all possible combination of those rules and hypotheses, then we need to perform
ny X n1 X ng times of calculation. Even if we only have 100 hypotheses in each stack and 100
rules obtained, the number of possible combinations will be 1,000,000. As we illustrated in
Figure 3.3, good translations tend to be form by translation rules and hypotheses having
good score. Obviously, it is redundant to search for all possible combinations. Cube Pruning
(Chiang, 2007) is a method to tackle this problem.

rules Hic EFKE: 40.1

X0: NP

X1: VP X1: VP

\

ABAEIC EF: 703\
AMBEICES: 71.2

rules rules

© BB AR 803 d B BB AR 753

X0: NP : Sl - A X1: VP

Figure 3.4: An illustration of cube pruning

In the above case, we first build a three-dimensional coordinates, so as to mark the position
of each hypothesis. We sort rules and child hypothesis by score, and put them to each axis
respectively. Rules and hypotheses with higher scores have lower coordinate values. As
the initial step, we combine the first rule and hypothesis in each axis to form an initial
hypothesis, and place it to the position (0,0,0). This is shown in Figure 3.4 (a). Next, we
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expand our searching area with one block in each direction, obtain the hypotheses at (1,0,0),
(0,1,0) and (0,0,1). In these three hypotheses we examined in this step, the hypothesis “0
00000O” has highest score. This step is shown in (b). Then next expansion starts from
the best hypothesis we searched in last step, we do this recursively as (c¢) and (d) show.
However, the number of hypotheses to be observed is limit by a parameter called Cube size.

Cube pruning is crucially important for decoding Tree-based translation models, because
in non-binary parse tree, a node may have multiple non-terminal and terminal children.
If we just limit the size of hypothesis stack and rules, that means only a small portion of
entire set of combinations is observed. In Cube pruning, the searching area which is more
likely to produce good translations will be expanded efficiently.

19



Chapter 4

Improving Translation Quality by
Tree Combination

4.1 Parse tree deficiencies

Context-free grammar (CFG) parse trees are widely used in tree-to-string statistical machine
translation models and generally provide comprehensive linguistic information, including the
structure of a given natural language sentence. On the other hand, Dependency parse trees
provide semantic information about the relations between words, which could be helpful for
capturing long-range word relationships in long sentence translation tasks.

Although Dependency trees provide more information about relationships between words
that are far apart, most Dependency tree parsers struggle to correctly parse non-content
words such as function words, idiomatic usages and some symbols that have no explicit
semantic definitions. These types of words could be considered as the constituent parts
of sentence structure. Unless these words are correctly translated, the translation of the
overall sentence will have problems.

We give an example in Figure 4.1 to demonstrate this problem. The Dependency tree
shown in Figure 4.1 corresponds to the sentence “do not undertake a project unless you
can implement it,” which translates into Japanese as “0 00000000000 OODO0O
ooboooboobbooboouobouobouobogd.” Usually, “ X unless X117 produces the
translation “X; 00000 OO Xy” in Japanese and is independent of the words in Xy and
X1. Hence, the word “unless” can be considered a word that determines sentence structure.
As we discussed in Chapter 3, for tree-based models, normally a parsed tree is decoded in
bottom-up fashion. Hence, the word “unless” will be translated at the beginning, as it is a
leaf node. This decoding makes the clues of the overall sentence structure hard to capture
and translate accurately.

This problem could be mitigated if the input of the translation system were to combine
both CFG and Dependency parse trees. In fact, the method described in this thesis will yield
a tree in the style of a hierarchical phrase tree, in which each node represents a phrase with
several non-terminal symbols. Each node in the combined trees has at least one terminal.
For each node, we pick out a terminal to be the headword of the node, and then use its
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undertake

N T

project implement
RV AANNG
a unless you can it

Figure 4.1: Parsed Dependency trees may cause translation problems

linguistic tag to represent the type of node.

4.2 Combining dependency relations with phrase-level struc-
tures in CFG trees

The core concept of the method described in this thesis is to construct a new tree that
intuitively keeps dependency relations at a large scale as well as reasonable phrase-level
structures extracted from the CFG tree. This method could also be thought of as recon-
struction of a CFG tree using dependency relations because the new tree is also a CFG tree.
Nodes close to the top in the Dependency tree also tend to be close to the top in combined
trees. This can make it easier for the translation model to capture translation relationships
between languages that differ in word order, as the head-dependent relationships of words
are usually in accordance, even if the order differs.

We apply heuristics to perform this reconstruction, which will be described in following
sections. In Sections 4.2.1 and 4.2.2, we first simplify the tree structure to handle words
without dependency relations. Then, Section 4.2.3 describes the core part of our combining
method, which incorporates the dependency relations into the CFG parse tree by reposi-
tioning terminal nodes. Finally, the method for determining non-terminal tags is described
in Section 4.2.4.

4.2.1 Removing redundant non-terminals in CFG trees

We simplify the parsed CFG tree by removing redundant non-terminals because keeping too
many non-terminals in a parse tree does not improve the translation quality. Our method
accomplishes this in two steps.

First, we remove non-terminals that have only one child node, as shown in Figure 4.2. In
this step, we avoid translating ambiguous non-terminals that represent the linguistic tag of
a terminal or a subtree.

The second step is to eliminate layers that contain no terminals (here, a layer is formed
of nodes that belong to the same parent node). The existence of such layers sometimes
misleads the decoding process because the translation of a tree fragment consisting of pure
non-terminals is ambiguous. We expect at least one terminal in an arbitrary tree fragment
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Figure 4.2: Removing non-terminals that have only one child node

to provide a clue for translation.

4.2.2 Separating words without dependencies

Some words do not appear in the parsed Dependency trees, so we place these words into sep-
arate layers. These words are usually symbols that represent the structure of the sentence,
so they should be separated from the content words that represent meanings. Although it
depends on what parser we use, it would normally introduce an ambiguity if we were to
force a dependency head on these words.

This step is done in the preprocessing phase. If a layer contains terminals without de-
pendency relationships, we do not allow two continuous non-terminals appear in the same
layer. For these continuous non-terminals, we create a new non-terminal with the tag “X”
and move them so that they are the children of the newly created non-terminal. The tag
“X” will eventually be replaced, as we apply dependency head tags to the non-terminals as
described in section .

The most common example of this is a comma in English. In figure 4.3, we show a example
of separating a comma, where “[NP] [VP]” are continuous non-terminals that appear in the
same layer as the comma. We create a new non-terminal “X,” and then move “[NP] [VP]”
beneath it.

[S] [S]

(e ] [ ] [ver] [P | I o e

AN AN \ AN [
| in | | [NP] | | the || accident || happenedl » II' [NP] INP] [VP]

| the || mean || time | | the || mean || time | | the | | accident || happened

Figure 4.3: Comma separation example
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4.2.3 Repositioning nodes by dependency relationships

In the above case, when a layer contains only one non-terminal, we simply remove this
node and directly concatenate its child nodes to its parent node. In a more complex case,
a layer is composed of two or more non-terminals. In this situation, a non-terminal node
is selected for replacement by its child nodes. We perform this selection by counting the
internal dependencies in this layer and finding the non-terminal with the subtree that has
the most dependent nodes in the scope. This means that the subtree should contain a
semantic head for the entire layer. This step is illustrated in Figure 4.4.

Figure 4.4 shows a fragment with a internal layer formed from non-terminals. We count
the dependent words for all child nodes and mark the word with the most dependent words
as the semantic head. Then we replace the non-terminal above the semantic head with its
child nodes.

| [NP] || [NP] | #| [NP] || electrode|

mal || elect Ith_e, terminal
[

t [¢ IT

Figure 4.4: Eliminating a layer with multiple non-terminals

In Figure 4.5, we show another example of restructuring a tree fragment that contains a
noun and verb. As the verb “depends” is the head of this span, we lift it up to the layer
immediately beneath the top node. For this kind of verb, we also put its prepositional
modifier in the same layer. In this example, the prepositional word “on” is moved to the
same layer as “depends.”

[S]

[ ne1 || depends | [ on ][ NP1 |
| the | |behaviour| | depends | [PP] »

Figure 4.5: Restructuring a tree fragment that contains a verb as a head

When the above steps are finished, we can merge the nodes in each layer together into one
node to form a tree in the style of a hierarchical phrase tree, which gives a more intuitive
image of the translation process.

The repositioning method discussed in this section generally attempts to put dependency
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heads into tree fragments that cover larger spans. Hence, the translation model can more
easily capture long-range translation rules.

4.2.4 Tag determination by headwords

As the structure of the parse tree is adjusted, the tags of non-terminal symbols need to be
reconsidered. In our method, new tags are determined by the corresponding headwords of
child nodes.

The headword of a phrase can be determined using dependency relations. In contrast to
some other methods (Li et al., 2012), we allow a phrase to have only one headword. Given
a token sequence f™ in the sentence f/ that is formed of terminals and non-terminals and
covers a span of words fl-j , we define the headword in the following way.

Definition 1. For token sequence f,", a terminal fi € f' is regarded as the headword if
[k has the most dependent words in f.

If two terminals have equal numbers of dependent words, we select the right-most word as
the headword. A combined tree fragment with marked headwords and new tags is illustrated
in Figure 4.6. In order to facilitate the understanding of rule acquisition in the next section,
we put the nodes of the same layer into one box here. The headword for each node is marked
with an underscore.

| [NN] depends on [NN] |

| thecoercivityof[NNS] |

each media

Figure 4.6: Example of a tree fragment with marked headwords and converted tags

4.3 Rule Acquisition

We extract the minimal necessary translation rules from pairs formed from a combined
source-side tree and target-side string.

Given a combined tree and words with alignment relations A, for an arbitrary subtree ¢
and target-side words ef = €, €i+1,-.-, €, We extract this pair as an initial translation rule
if the following conditions are satisfied.

1) Elfmet,enEej st. < fm,en>€ A

7

2) me¢t,€n€€j ) <fm76n>¢ A

7
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AV imetende | <fmen>¢ A
4) eg has minimal length

If a tree fragment in the initial translation rules contains other fragments that also exist
in the initial translation rules, then we mark those child fragments as sites constrained by
the linguistic tag of the headwords of the child fragments. Corresponding sites on the target
side are not constrained.

An illustration of hierarchical rule extraction is shown in Figure 4.7. We show a combined
tree and its corresponding Japanese translation. The dotted lines show word alignments
automatically retrieved. According to the alignments, we know the two child fragments
have corresponding translations “00 O O0O” and “O00 O7” respectively. Hence, we can
replace either fragment with a site X; to form two hierarchical rules. In addition, if we
replace both fragments with X; and Xs, the third hierarchical rule shown in Figure 4.7 can
be formed.

| [NN] resqlts in [N‘N] |

il
"
I
fpt

| the downstream air ”' the target value

-

T Bl TS - o T BIE B A A% Sh B

[NN] resultsin [NN] 2 X, 12 > T X,
the downstream air results in [NN] 2 T @ ZK I #> T X,
[NN] results in the target value 2 x, 1= > T B &

Figure 4.7: Hierarchical rule extraction

4.4 The model

As in other recent statistical machine translation models, we adopt a general log-linear
model:

é = argmaz, H di(e)N
7

Here, we use following features for decoding:
e Translation probabilities, P(e|f) and P(f|e)
e Lexical translation probabilities, Pex(e|f) and Piex(fle)

e Language model, Py, (e)
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e Rule penalty, exp(—1)
e Word penalty!, exp(—1)

These features are basically the same as those used in the Hierarchical phrase-based
model.

4.5 Decoding

In our decoder, we use bottom-up decoding to find the best derivations. Given a combined
tree, for each node n we attempt to find translation rules that exactly match the one-layer
tree fragment rooted at n. If any rule is found, we traverse all tree fragments rooted at n for
a maximum of three layers to find translation rules that cover a larger span. If no rules are
found in these steps, we attempt to find composed rules. As a last resort, we decompose all
child nodes in the fragment and apply a glue rule to concatenate their translations together.

The search for translation rules for the top fragment in Figure 4.5 is illustrated in Figure
4.8. In our implementation, we do not restrain the searching process by the tag of a parent
node, so the root tag is presented by “X.” For the given tree fragment, we search for rules
that exactly match the fragment in the source side, which is “[NP] depends on [PP].” If
any matched rules exist, then it is likely that rules that match a larger portion of the entire
tree exist. Hence, we try to expand the two non-terminals “NP” and “PP” to gain larger
fragments and find corresponding rules. If we fail to find exact rule matches, we decompose
the fragment into several portions and find translation rules for them accordingly. Then,
we use a glue rule to concatenate the translation hypotheses together. If no rules found in
the above steps, we search for “[NP],” “depends,” “on,” and “[NP]” individually. As we
decode in a bottom-up fashion, the hypotheses for translating non-terminals have already
been prepared. For terminals, we allow an English word to be translated to itself if no
Japanese translations are found in the rule table.

We use cube pruning (Chiang, 2007) to find the best derivation for each tree fragment,
and also set a beam size for every hypothesized stack of nodes.

4.5.1 Optimizing for memory usage

Normally, the decoder of a statistical machine translator reads the whole rule table into
memory at the beginning. This requires a large amount of memory even though most of
the translation rules are not used during the translation process. In order to address this
problem, we hashed all source-side strings of the translation rules, and loaded only those
hashed strings into memory. As a result, our decoder consumes only 3.8GB of memory
during the evaluation task.

Our decoding process is divided into two steps: rule fetching and translation. In the rule
fetching step, we find all possibly usable translation rules for each node in the combined
tree, and dynamically read them into memory from the on-disk rule table. In the translation

'We did not include the word penalty feature in our translation model for the formal run of the NTCIR-10
workshop.

26



found

depends

failed

]

I

[}

' search:

| T TT Tttt Tt T T T T T T T T T T T T T
] [}

I

| failed ] g ] [

| —) | + + +

: :

I ]

I L
]

I

[}

]

Figure 4.8: Search for the translation rules of a tree fragment
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step, as all translation rules have been prepared, there are no I/O operations. So we could
perform these two steps in two parallel processes, which will increase the speed of decoding.
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Chapter 5

Experiments

In this chapter we present several evaluations carried out with our proposed model. In
section 5.1, we present the evaluations in NTCIR-10 workshop. In their official human
evaluations, the translation results produced by our model are shown to be more adequate
comparing with their baseline models (Hierarchical phrase-based model and Phrase-based
model). In the evaluations carried by ourselves (section 5.2), it shows our model generally
produces better translations comparing with translating CFG parse trees alone. In the
rest parts of this chapter, we present the error analyses of some samples picked out from
translation results and an attempt to utilize hybrid parse tree in the translation model.
This chapter ends with a sample of combined parse tree and several translation samples.

5.1 Evaluations at NTCIR-10 workshop

The NTCIR Workshop is a series of evaluation workshops designed to enhance research in
information access technologies including machine translation, which is held by NII (Na-
tional Institute of Informatics). In NTCIR-10, the organizer of English-to-Japanese Patent
Machine Translation Task provides a training corpus which contains 3M bilingual sentences,
2000 bilingual sentences for tuning the model. In the formal run of the evaluation, par-
ticipants are required to translate 2300 sentences and submit the results to the organizer.
They evaluate the results using both automatic metrics and also human evaluation methods
proposed by Goto et al..

In the preprocessing phase, we used Mecab (a part-of-speech and morphological analyzer
for Japanese) to segment sentences into words in the Japanese side of the corpus.We parsed
English-side sentences with the Berkeley Parser (Petrov et al., 2006) to get CFG parse
trees, and then produced normal dependency parse trees with the Stanford Parser (Klein
& Manning, 2003) using parsed CFG trees from the Berkeley Parser as input.

We generated word alignments using GIZA++ on the training corpus in both directions
with the “grow-diag-final-and” refinement.

For the language model, we obtained a 5-gram model on Japanese-side sentences with
interpolated Kneser-Ney smoothing using the SRILM Toolkit (Stolcke, 2002).

In order to tune the weights of each feature in our translation model, we used Minimal

29



Error Rate Training. The development data contains 2000 bilingual sentences.

In the decoding phase, we used 2000 for the cube size for cube pruning, and 1000 as the
beam size.

To solve the problem of the sparseness of the rule table, we simplified the linguistic tag
set produced by the Berkeley Parser from 45 types to 8 types. We generally mapped noun
tags like “NNS” and “NN” to a single tag “NP”. Verb tags were mapped to “VP”. Some
rare linguistic tags like “SYM” were also mapped to “NP”. Finally, we adopted 8 tags in
our translation system:

NP, VP, JJ, CD, IN, S, TO, DT .

In the intrinsic subtask of the NTCIR-10 PatentMT English-to-Japanese task, we sub-
mitted three run results: TSUKU-ej-int-1, TSUKU-¢j-int-2 and TSUKU-ej-int-3 (Zhu et
al., 2013).

TSUKU-ej-int-1 was translated using a normal 5-gram language model, which was trained
from the same bilingual corpus we used to train our translation model. While the other two
results are translated using a 5-gram language model trained from a large-scale monolingual
resource of about 174M sentences from Japanese patent applications in the period 1993—
2000.

We used KenLLM in the decoding process for TSUKU-¢j-int-1 and TSUKU-ej-int-3, and
the LSH compressed language model proposed by Norimatsu for TSUKU-ej-int-2.

5.1.1 Formal run results

The official automatic evaluation results are shown in Table 5.1. Our three runs were worse
in terms of BLEU but better in terms of the NIST and RIBES metrics than the organizer
baseline using a hierarchical phrase-based model.

Table 5.2 shows the subjective evaluation results. Our translation of TSUKU-ej-int-1
achieved a better Adequacy score than the organizer baselines.

Table 5.1: Official automatic evaluation results for the English-to-Japanese task

System BLEU | NIST | RIBES
System runs

TSUKU-ej-int-1 0.3141 | 8.126 | 0.7555
TSUKU-¢j-int-2 0.319 | 8.1894 | 0.7565
TSUKU-ej-int-3 0.3176 | 8.1769 | 0.7566

Organizer baselines
BASELINE HPBMT | 0.3298 | 8.0837 | 0.7231
BASELINE PBMT 0.3361 | 8.1816 | 0.7042
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Table 5.2: Official subjective evaluation results for the English-to-Japanese task
System ‘ Adequacy ‘ Acceptability

System runs

TSUKU-ej-int-1 | 2.7933 | 0.4088
Organizer baselines

BASELINE HPBMT | 2.69 -
BASELINE PBMT 2.5333 -

5.1.2 Post-evaluation results

The results of the formal run were not ideal because we did not include a word penalty
in the features of our model due to an oversight. Table 5.3 shows the post-evaluation
results. The scores are slightly different to the official automatic evaluation scores because
we are using “mteval-vl1b.pl” to do the automatic evaluation. TSUKU-ej-int-15ubmitted jg
the translation result we submitted in the formal run and TSUKU-ej-int-17°% refers to the
translation result of our post-evaluation.

By appending word penalty to the features of our model, we could see a promotion in
BLEU score but not too varied according to other evaluation criterions.

Table 5.3: Post-evaluation results for the English-to-Japanese task

System | BLEU | NIST | RIBES
System runs

TSUKU-ej-int-1Po5 0.3308 | 8.014 [ 0.756
TSUKU-ej-int-15ubmitted | (3145 | 8.0821 | 0.756
baselines

BASELINE HPBMT | 0.3306 | 8.0849 | 0.7242

As we are expecting our model to achieve better translation quality in long sentence
translations, we also evaluated it with a test corpus formed by 1048 sentences, which are
picked out from formal run data of NTCIR8 and NTCIR-10 and each sentence is longer
than 40 words in English side.

Evaluation results in table 5.4 show our model could generally generate better translations
than that of hierarchical phrase-based model. Conversely, short sentence translation is the
weakness of our model due to the constrain of parsing errors.

Table 5.4: Post-evaluation results for the long sentence translations
System \ BLEU \ NIST \ RIBES
System runs
TSUKU-¢j-int-17" ] 0.3238 | 7.966 | 0.7141

Baselines

BASELINE HPBMT | 0.3185 | 7.9946 | 0.6718
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5.2 Evaluations comparing with the CFG-based SMT sys-
tems

To compare with tree-to-string translation models using unmodified CFG trees, we built two
baseline models. The first one is Syntax-based translation model implemented in Moses.
In our experiments, we tried both right-binarized CFG tree and non-binary CFG tree as
the input. We also built another model which translates non-binary CFG tree using our
self-made decoder. In Table 5.5, we show the evaluation results of above models.

Table 5.5: Self evaluation results

Model BLEU | RIBES

Moses Tree-to-string using non-binary CFG 0.2855 | 0.684

Moses Tree-to-string using binary CFG 0.3273 | 0.724
Self-made decoder using non-binary CFG 0.2865 | 0.728
Self-made decoder using combined tree (Proposed model) | 0.3308"* | 0.756

* means the result is significantly different at 5% level comparing with other methods (only for BLEU

evaluation criterion).

5.3 Error analysis

We analyzed 16 translation samples produced by our model that contain errors in them. 5 of
them are caused by parsing error, 8 of them is due to the error produce by translation model,
and 3 samples are caused by inappropriate preprocessing for escaped HTML characters.

Parsing errors are inevitable in syntactic parsing, and caused by multiple reasons. A
typical example of parsing error in the domain of patent is shown in Figure 5.1. This CFG
tree is parsed from the sentence “The fixing roller 51 rotates clockwise as indicated by
the arrow.”. In this Figure, Non-terminal tags are presented in parentheses, all leaf nodes
contains terminals. Both Berkeley parser and Stanford parser produce similar result. This
error is caused by the existence of terminal node “[CD]51”, which should be a portion of
“fixing roller 51”. This kind of parsing error prevails in parsing results of patent documents.

For errors involved in translation model, an example is shown in Figure 5.2. This tree
is parsed from the sentence “this makes it much easier to secure the soldering area”, and
has the Japanese translation “O00 0000000000000 OOOOOOO0O”. In the
left side, we show a tree combined CFG and Dependency relationships by our proposed
method, with the finally applied translation rule of each minimum fragment for the best
hypothesis shown in the right side. In this example, no parsing error is involved, but the
best translation hypothesis gives the result “O 0000000000 O0OOO0ODOOOO0O
07”. We consider this is caused by failing to capture the translation relationship of “this
makes it Xg — 000000 Xy”, which is a easy job in phrase-based models. The tree
fragment covers the phrase “this makes it” contains 3 layers, so it’s generally a intractable
problem for Tree-based models.
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Conme> Cvssitang > Cpnrorn > Clavar
[VBD]indicated @

Figure 5.1: A typical example of parsing error in patent

» D XoZE N TED

> Xo FER

Figure 5.2: A combined tree and best hypotheses for each node
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5.4 Translating hybrid parse trees

As we discussed in Chapter 3, our model is also very sensitive to parsing errors. Although
Forest-based decoding is a solution to tackle this problem, it will significantly increase de-
coding time. We tried a different approach to perform a hybrid translation which translates
parse trees of multiple different parsers. In our experiment, Berkeley parser and Stanford
parser are selected. According to the work of (Cer et al., 2010), a comparison of Unlabeled
and labeled attachment F1 score to generate standard Stanford Dependencies for Berkeley
parser and Stanford parser is shown in Table 5.6.

Table 5.6: Unlabeled and labeled attachment F1 score (%) of Berkeley parser and Stanford
parser

Parser | Unlabeled | Labeled
Stanford 7.2 84.2
Berkeley 90.5 87.9

We train our model upon the parsing results of Berkeley parsers, but in the decoding
phase, we parse one sentence using two parsers respectively. Thus we have two set of parse
trees, we decode them simultaneously, and then select the translation hypothesis with the
highest score for each input sentence. The evaluation result compared with Hierarchical
phrase-based model and proposed model that decodes parse trees of Berkeley parser is
shown in Table 5.7.

Table 5.7: Evaluation results of proposed model with hybrid parse trees

Model BLEU | RIBES

Moses Hierarchical phrase-based model 0.3306 | 0.7242
Proposed model decodes parse trees of Berkeley parser | 0.3308 | 0.756
Proposed model decodes hybrid parse trees 0.3374 | 0.761

5.5 Sample of Tree combination

In this section we show a sample of tree combination. In Figure 5.3, we present a sample
of CFG parse tree, where the number in each node helps to distinguish between nodes with
same tag. The combine tree correspond to the same sentence is shown in Figure 5.4. Where
the words containing the head are putted into a higher layer comparing with them CFG
tree.
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[Afollowing-4

[VBN]prepared-10

Figure 5.3: A sample of CFG parse trees

[dJfollowing-5 [NN]reaction-6

Figure 5.4: A sample of combined parse trees
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5.6 Samples of translation

In table 5.8 we show a improved translation sample comparing with Hierarchical phrase-
based model. We can observe from the translation results that the translation result of
Hierarchical phrase-based model is affected by the order of words in English side sentence.
Our proposed model captured the head “calculated / 000 O” (words with underlines)
and put it to the end of Japanese translation correctly.

Table 5.8: A translation sample comparing with Hierarchical phrase-based model

English input | Specifically , the FF amount is calculated at every
second calculation timing based on an average value
of fuel injection amounts , as will be described later

Result of HPBmodel | OO0 00000000 0ODODOOOOODODOOOO
00000 00000000000 00oo0oo0ogon
OO0oooooooon

Result of proposed model | 000000000000 DOO0ODOOOOODOODOO
O0o0o0o00ooooooooooooooooon

Another sample of the translation result of our proposed model comparing with trans-
lating CFG trees (using Moses as decoder) alone is shown in table 5.9. The tree-to-string
translation model translating CFG trees alone is still unable to capture and translate the
whole sentence correctly. With the correct recognition of the head “arranged / 00 0O OO
007, our model produced a significantly better result.

Table 5.9: A translation sample comparing with translating CFG trees alone
English input | In this embodiment , the airbag apparatus 120 is
arranged so that the direction of protrusion ( de-
ployment and inflation ) of an airbag 122 ( described
later ) which constitutes the airbag apparatus 120 is
directed toward a lumbar part area 132 of the rider
protecting area 130 .
Result of translating CFG trees | 0 0 O 0 0 0 0 OO0 0O 000 OODODOOAO
gooooond gooogoooooooood
ogoodoooooooobooobooooooooa
goooooobobuobbboooooooooa
ooooooooooa
Result of proposed model | OO0 000000000 DOODOOOOODOOOOOO
ogooooooooooooooooooooooa
0000000oo0oo0ooooooooooooon
goooooooooooooooogn
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Chapter 6

Conclusions

In this thesis, we have described the SMT translation model that uses as input a combination
of CFG and dependency parse trees. The combined trees maintain dependency relations
by adjusting node positions according to their dependency heads, and defining headwords
in each combined phrase-like node to provide linguistic tags. As our combined trees are
transformed basing on parsed CFG trees, the structure words remain in reasonable positions.

Our experiments focus on the English-to-Japanese translation. As English and Japanese
hugely differ in syntactic structure and word order, translation models that do not utilize
head-dependent relationships tend to be affected by the syntactic structures or word order
of English. Especially in the translation tasks for long sentences, they can hardly capture
the head of the sentence (usually a verb), and put it to the end of Japanese translation. In
our experiments, it shows combining dependency relationships into CFG parse trees benefits
the translation model to enable it to capture head words and translate it correctly, even in
a long sentence.

We implemented a Tree-to-string decoder to carry out several experiments to evaluate
our model, which show our translation model using combined parse trees generally produces
better translation results comparing with translating CFG parse trees alone. In the human
evaluation carried out in NTCIR-10 Workshop, the results show our model produces more
adequate translations comparing with the state-of-the-art Hierarchical phrase-based model
and Phrase-based model.

By the error analysis of some sample translations of our model, it revealed the parsing
errors are still affecting the translation accuracy in our model. Also, for some idiomatic
phrases, it is difficult for our model to capture and translate them correctly.
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